Reaction-diffusion problems under non-local boundary conditions with blow-up solutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up versus Global Boundedness of Solutions of Reaction Diffusion Equations with Nonlinear Boundary Conditions∗

In this paper we analyze the behavior of solutions of reaction-diffusion equations with nonlinear boundary conditions of the type (1.1). We show that if f(x, u) = −β0u and g(x, u) = uq in a neighborhood of a point x0 ∈ ΓN , then i) for the case q > 1, if p + 1 < 2q or if p + 1 = 2q and β0 < q, then blow up in finite time at x0 occurs. ii) for the case p > 1 if p + 1 > 2q or if p + 1 = 2q and β0...

متن کامل

Blow-up in the Parabolic Problems under Nonlinear Boundary Conditions

In this paper, I consider nonlinear parabolic problems under nonlinear boundary conditions. I establish respectively the conditions on nonlinearities to guarantee that ( , ) u x t exists globally or blows up at some finite time. If blow-up occurs, an upper bound for the blow-up time is derived, under somewhat more restrictive conditions, lower bounds for the blow-up time are also derived.

متن کامل

Blow-up in the Parablic Problems under Nonlinear Boundary Conditions

The paper deals with a degenerate and singular parabolic equation with nonlinear boundary condition. We first get the behavior of the solution at infinity, and establish the critical global existence exponent and critical Fujita exponent for the fast diffusive equation, furthermore give the blow-up set and upper bound of the blow-up rate for the nonglobal solutions.

متن کامل

Blow-Up of Solutions for a Class of Reaction-Diffusion Equations with a Gradient Term under Nonlinear Boundary Condition

The blow-up of solutions for a class of quasilinear reaction-diffusion equations with a gradient term ut = div(a(u)b(x)∇u)+ f (x,u, |∇u|2, t) under nonlinear boundary condition ∂u/∂n + g(u) = 0 are studied. By constructing a new auxiliary function and using Hopf’s maximum principles, we obtain the existence theorems of blow-up solutions, upper bound of blow-up time, and upper estimates of blow-...

متن کامل

Global and blow-up solutions for nonlinear parabolic problems with a gradient term under Robin boundary conditions

where D⊂RN (N≥ 2) is a bounded domain with smooth boundary ∂D. By constructing auxiliary functions and using maximum principles, the sufficient conditions for the existence of a global solution, an upper estimate of the global solution, the sufficient conditions for the existence of a blow-up solution, an upper bound for ‘blow-up time’, and an upper estimate of ‘blow-up rate’ are specified unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2014

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2014-167